Gait Generation and Control of a Hexapod Walking Robot
نویسندگان
چکیده
In this paper, the mechanical structure of a hexapod walking robot is presented and the kinematic model is established. The foot trajectory of each leg, which is optimized by genetic algorithms to minimize energetic cost, was proposed with two different gait patterns applied. Control system was divided into coordination-layer and execution-layer. Coordination-layer, was a PC responsible, for whole system’s regulation. It could calculate each joint’s expected trajectory according to user’s definitions, and then transmitted object position data to execution-layer through serial port. The execution-layer used LPC2132 based on ARM7 for core controller. Control system realized the human-machine interaction, gait generation, complex kinematic calculation and servomotor control. Experimental results of the robot shows that it could walk smoothly without obvious body undulation.
منابع مشابه
Kinematic and Gait Analysis Implementation of an Experimental Radially Symmetric Six-Legged Walking Robot
As a robot could be stable statically standing on three or more legs, a six legged walking robot can be highly flexible in movements and perform different missions without dealing with serious kinematic and dynamic problems. An experimental six legged walking robot with 18 degrees of freedom is studied and built in this paper. The kinematic and gait analysis formulations are demonstrated by an e...
متن کاملEnergy Dissipation Rate Control Via a Semi-Analytical Pattern Generation Approach for Planar Three-Legged Galloping Robot based on the Property of Passive Dynamic Walking
In this paper an Energy Dissipation Rate Control (EDRC) method is introduced, which could provide stable walking or running gaits for legged robots. This method is realized by developing a semi-analytical pattern generation approach for a robot during each Single Support Phase (SSP). As yet, several control methods based on passive dynamic walking have been proposed by researchers to provide an...
متن کاملDynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains
Quadruped robots have unique capabilities for motion over uneven natural environments. This article presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics...
متن کاملDynamics, Stability Analysis and Control of a Mammal-Like Octopod Robot Driven by Different Central Pattern Generators
In this paper, we studied numerically both kinematic and dynamic models of a biologically inspired mammal-like octopod robot walking with a tetrapod gait. Three different nonlinear oscillators were used to drive the robot’s legs working as central pattern generators. In addition, also a new, relatively simple and efficient model was proposed and investigated. The introduced model of the gait ge...
متن کاملAccurate tracking of legged robots on natural terrain
Statically stable walking locomotion research has focused mainly on robot design and gait generation. However, there is a need to expand robots’ capabilities so that walking machines can accomplish the kinds of real tasks for which they are eminently suited. Many such tasks demand trajectory tracking, but researchers have traditionally ignored this subject. This article focuses on the tracking ...
متن کاملImproving the Navigability of a Hexapod Robot using a Fault-Tolerant Adaptive Gait
This paper encompasses a study on the development of a walking gait for fault tolerant locomotion in unstructured environments. The fault tolerant gait for adaptive locomotion fulfills stability conditions in opposition to a fault (locked joints or sensor failure) event preventing a robot to realize stable locomotion over uneven terrains. To accomplish this feat, a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015